

A-frame

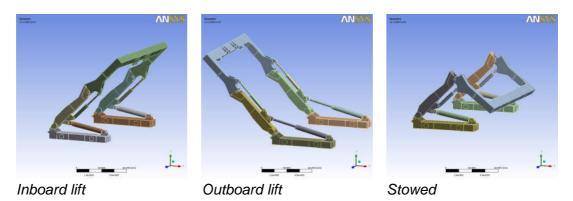
Stress calculations

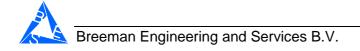
Report number: Revision: Date: Author: R08010_001 0.1 March 5 2008 ing. B.P. Dullaart

Ordered by:

Contents

1	Introduction2					
2	Criteria a	nd Classifications	. 3			
	2.1 Loa	d considerations (Lloyds Register §2.2)	. 3			
	2.2 Loa	d combinations (Lloyds Register §2.16)	. 3			
	2.3 Allo	wable stress – Elastic failure (Lloyds Register §2.18)	4			
	2.4 Use	ad materials and their criteria	. 5			
3	Stress ca	alculations	. 6			
	3.1 Inbo	oard Lift	. 7			
	3.1.1	Geometry	. 7			
	3.1.2	Connections				
	3.1.3	Mesh				
	3.1.4	Loadcase: Inboardlift case 1				
	3.1.5	Solution: Inboard lift case 1				
	3.1.6	Loadcase: Inboardlift case 2				
	3.1.7	Solution: Inboardlift case 2				
		board Lift				
	3.2.1	Geometry				
	3.2.1	Connections				
	3.2.2	Mesh				
	3.2.3	Loadcase: Outboardlift case 1				
	3.2.4	Solution: Outboardlift case 1				
	3.2.6	Loadcase: Outboardlift case 2				
	3.2.0	Solution: Outboardlift case 2				
	-	wed				
	3.3.1	Geometry				
		•				
	3.3.2	Connections				
	3.3.3	Mesh				
	3.3.4	Loadcase: Stowed				
	3.3.5	Solution: Stowed	-			
		kling analysis				
		If calculations				
	3.5.1	Shaft 1				
	3.5.2	Shaft 2				
	3.5.3	Shaft 4				
	3.5.4	Shaft 5				
	3.5.5	Shaft 6				
	3.5.6	Shaft 7	37			
4	Conclusio	on	38			


Appendices



1 Introduction

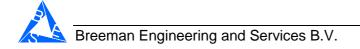
An A-frame is required for maximum lifting load of 35 ton. Several load cases are to be checked for appearing stress levels with a finite elements analysis.

A specification of the design criteria can be found in appendix A.

2 Criteria and Classifications

The Stress calculations are made according to the Lloyd's Register rules: "Code for Lifting Appliances in a Marine Environment"

2.1 Load considerations (Lloyds Register §2.2)


Consideration is to be given to the utilization and duty of the particular type of crane in the 'in service' condition with respect to the following forces and loads:

- a) Dead Loads
- b) Live loads
- c) Dynamic forces due to the various crane movements
- d) Forces du to ship inclination
- e) Load swing caused by non-vertical lift
- f) Wind forces and environmental effects
- g) Loads on access ways, platforms, etc.
- h) Snow and ice when considered relevant

2.2 Load combinations (Lloyds Register §2.16)

For the calculation several load combinations are possible:

- Case 1 Crane operation without wind
- Case 2 Crane operation with wind
- Case 3 Crane in stowed condition
- Case 4 Crane subjected to exceptional loading

2.3 Allowable stress – Elastic failure (Lloyds Register §2.18)

The allowable stress, σ_a , is to be taken as the failure stress of the component concerned multiplied by a stress factor, Sf, which depends on the load case concerned. The allowable stress is given by the general expression:

 $\sigma_a = Sf \cdot \sigma$

where

 σ_a = allowable stress, in N/mm²

sf = stress factor

 σ = failure stress, in N/mm²

The stress factor, sf, for steels in which $\frac{\sigma_y}{\sigma_y} \le 0.7$

where

 σ_{Y} = yield stress of material, in N/mm² σ_{u} = ultimate tensile stress of material, in N/mm²

are given in table below

Load case	1	2	3 and 4
Stress factor, Sf	0,67	0,75	0,85

For steel with $\frac{\sigma_y}{\sigma_u}$ > 0,7 the allowable stress is to be derived from the following

expression: $\sigma_a = 0.41Sf \cdot (\sigma_u + \sigma_v)$

 $\tau_a = 0.24Sf \cdot (\sigma_u + \sigma_y)$

where

 τ_{a} = allowable shear stress.

The failure stress for the elastic modes of failure are given in table below

Mode of failure	Symbol	Failure stress
Tension	σ_{t}	1,0σ _y
Compression	σ_{c}	1,0σ _y
Shear	$ au_{a}$	0,58σ _y
Bearing	σ_{br}	1,0σ _y

For components subjected to combined stresses the following allowable stress criteria are to be used:

(a) $\sigma_{xx} < Sf\sigma_t$ (b) $\sigma_{yy} < Sf\sigma_t$ (c) $\tau_0 < Sf\tau$ (d) $\sigma = (\sigma_{xx}^2 + \sigma_{yy}^2 - \sigma_{xx} \sigma_{yy} + 3\tau_0^2)^{1/2} \le 1,1Sf\sigma_t$ where σ_{xx} = applied stress in x direction, in N/mm² σ_{yy} = applied stress in y direction, in N/mm²

 $\tau_{\rm O}$ = applied shear stress, in N/mm².

2.4 Used materials and their criteria

• The construction can be fabricated out of the material **S355J2G3** (St.52-3) with the following specifications:

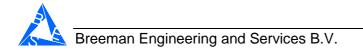
$$\sigma_u = 520 \frac{N}{mm^2}$$
 and $\sigma_y = 355 \frac{N}{mm^2}$

 $\frac{\sigma_y}{\sigma_u} = \frac{355}{520} = 0,68 \le 0,7$

For load combination 2 the maximum allowable stresses are calculated to $\sigma_a = Sf \cdot \sigma_y = 0.75 \cdot 355 = 266 \frac{N}{mm^2}$

For load combination 3 the maximum allowable stresses are calculated to $\sigma_a = Sf \cdot \sigma_y = 0.85 \cdot 355 = 301 \frac{N}{mm^2}$

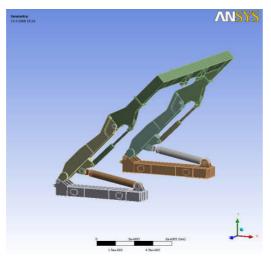
• The construction can be fabricated out of the material **42CrMo4** 100-160mm with the following specifications:

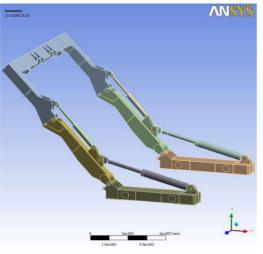

$$\sigma_{u} = 800 \frac{N}{mm^{2}}$$
 and $\sigma_{y} = 550 \frac{N}{mm^{2}}$
 $\frac{\sigma_{y}}{\sigma_{u}} = \frac{550}{800} = 0,69 \le 0,7$

For load combination 2 the maximum allowable stresses are calculated to $\sigma_a = Sf \cdot \sigma_y = 0.75 \cdot 550 = 412 \frac{N}{mm^2}$

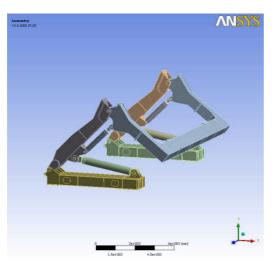
 The construction can be fabricated out of the material 42CrMo4 160-250mm with the following specifications:

$$\sigma_{u} = 750 \frac{N}{mm^{2}}$$
 and $\sigma_{y} = 500 \frac{N}{mm^{2}}$
 $\frac{\sigma_{y}}{\sigma_{u}} = \frac{500}{750} = 0,67 \le 0,7$


For load combination 2 the maximum allowable stresses are calculated to $\sigma_a = Sf \cdot \sigma_y = 0.75 \cdot 500 = 375 \frac{N}{mm^2}$

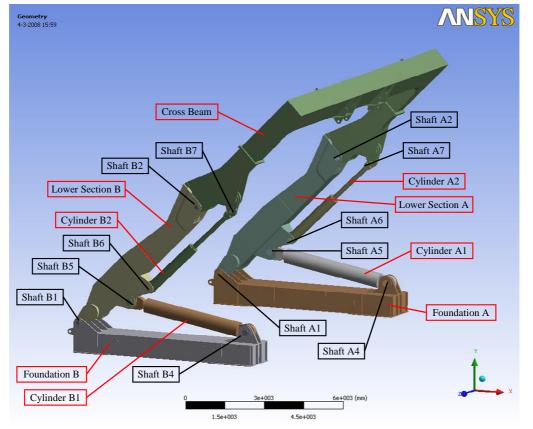


3 Stress calculations


The stress calculations are made for 5 different load cases. Each load case is being checked for inadmissible stress levels. The design criteria can be found in appendix A.

Inboard lift case 1 and case 2

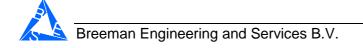
Outboard lift case 1 and case 2

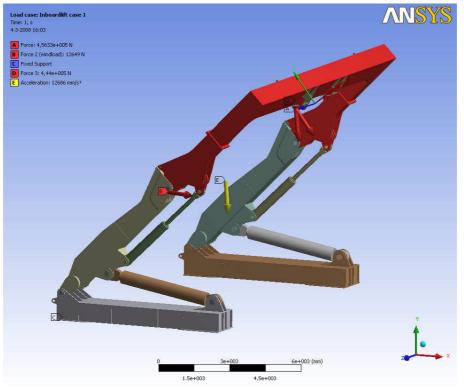


3.1 Inboard Lift

3.1.1 Geometry

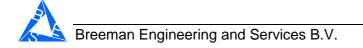
3.1.2 Connections


Object name	Туре	Object name	Туре
Cross Beam To Lower Section A	No Separation	Cylinder A2 To Shaft A6	No Separation
Cross Beam To Shaft A2	No Separation	Cylinder A2 To Shaft A7	No Separation
Cross Beam To Cylinder A2	No Separation	Cylinder A1 To Shaft A5	No Separation
Cross Beam To Shaft A2	No Separation	Cylinder A1 To Shaft A4	No Separation
Cross Beam To Shaft A7	Bonded	Foundation B To Lower section B	No Separation
Cross Beam To Lower section B	No Separation	Foundation B To Shaft B1	Bonded
Cross Beam To Shaft B2	No Separation	Foundation B To Cylinder B1	No Separation
Cross Beam To Cylinder B2	No Separation	Foundation B To Shaft B4	Bonded
Cross Beam To Shaft B2	No Separation	Lower section B To Shaft B1	No Separation
Cross Beam To Shaft B7	Bonded	Lower section B To Shaft B2	Bonded
Foundation A To Lower Section A	No Separation	Lower section B To Cylinder B2	No Separation
Foundation A To Shaft A1	Bonded	Lower section B To Cylinder B1	No Separation
Foundation A To Cylinder A1	No Separation	Lower section B To Shaft B5	Bonded
Foundation A To Shaft A4	Bonded	Lower section B To Shaft B6	Bonded
Lower Section A To Shaft A1	No Separation	Lower section B To Shaft B2	Bonded
Lower Section A To Shaft A2	Bonded	Cylinder B2 To Shaft B6	No Separation
Lower Section A To Cylinder A2	No Separation	Cylinder B2 To Shaft B7	No Separation
Lower Section A To Cylinder A1	No Separation	Cylinder B1 To Shaft B5	No Separation
Lower Section A To Shaft A5	Bonded	Cylinder B1 To Shaft B4	No Separation
Lower Section A To Shaft A6	Bonded		
Lower Section A To Shaft A2	Bonded		

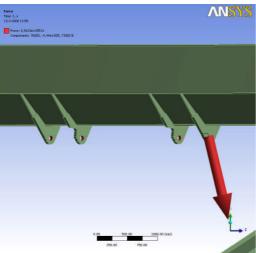

3.1.3 Mesh

3.1.4 Loadcase: Inboardlift case 1

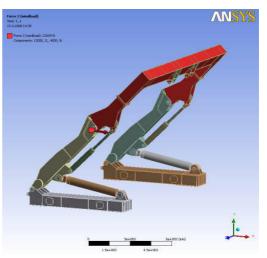
Force

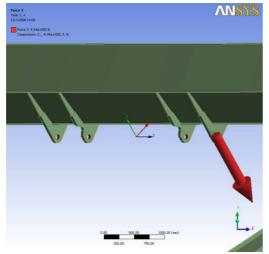

$$\begin{split} F_{y} &= -423 \cdot 10^{3} - 21 \cdot 10^{3} = -444 \cdot 10^{3} N \\ &(= designload + vertical vessel motion on SWL) \\ F_{x} &= 22 \cdot 10^{3} + 8 \cdot 10^{3} + 46 \cdot 10^{3} = 76 \cdot 10^{3} N \\ &(= transverse offlead + transverse windload on load + transverse vessel motion on SWL) \\ F_{z} &= 44 \cdot 10^{3} + 4 \cdot 10^{3} + 25 \cdot 10^{3} = 73 \cdot 10^{3} N \\ &(= longitudinal offlead + longitudinal windload on load + longitudinal vessel motion on SWL) \end{split}$$

Force 2: Windload on structure $F_x = 12 \cdot 10^3 N$ (transverse windload on structure) $F_z = 4 \cdot 10^3 N$ (longitudinal windload on structure)

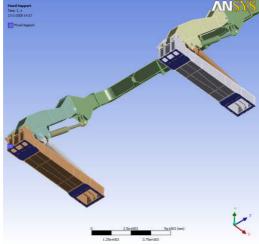

Force 3: From top sheave to deck level in angle 52° $F_{52^\circ} = -444 \cdot 10^3 N$ (= F_v from top sheave to deck level in angle 52°)

Acceleration / vessel motions


 $\begin{aligned} a_{y} &= -600 + 1.2 \cdot -10000 = -12600 \ mm/s^{2} \ (vertical \ acceleration + 1.2 \cdot gravity) \\ a_{x} &= 1300 \ mm/s^{2} \ (transverse \ acceleration) \\ a_{z} &= 700 \ mm/s^{2} \ (longitudinal \ acceleration) \end{aligned}$

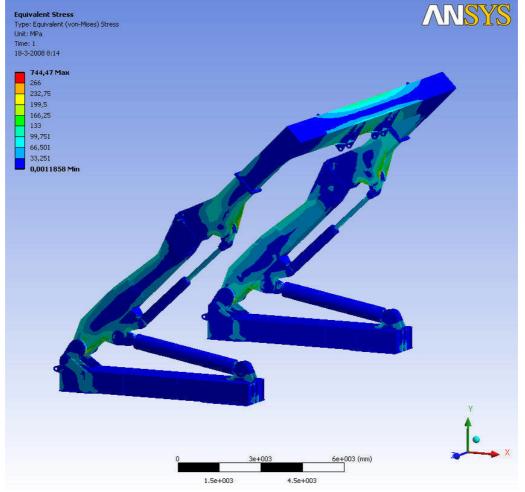


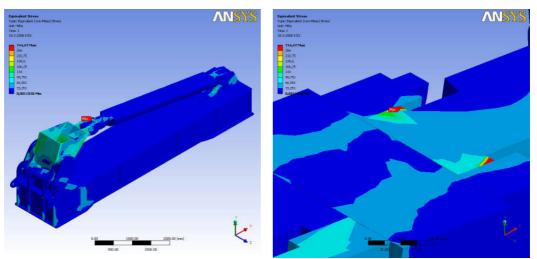
Force (areas marked red)



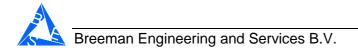
Force 2, wind load (areas marked red)

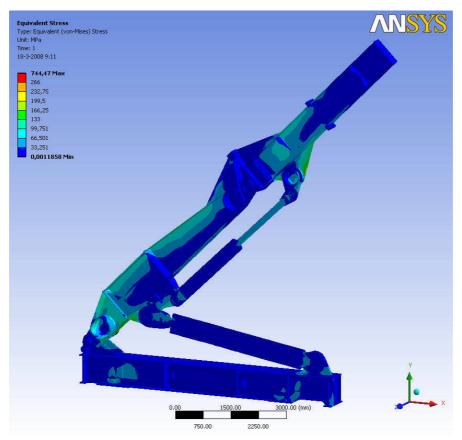
Force 3 (areas marked red) from top sheave to deck level in angle 52°

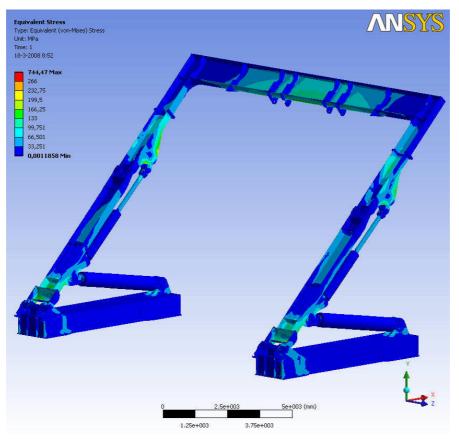

Fixed Support (areas marked blue)

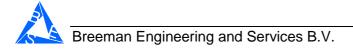


3.1.5 Solution: Inboard lift case 1

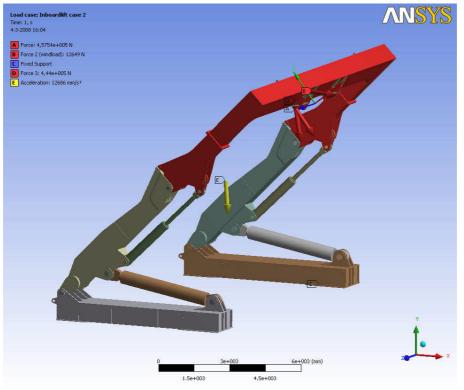

Stress levels are shown in the figures below. For this load case a maximum allowable stress is 266 N/mm² (see §2.2). Inadmissible stress levels are marked in the color red. A maximum peak stress of 744,47 N/mm² is found, but this is probably a result of singularity in the model. Therefore this peak stress can be ignored.


Equivalent stress levels (total overview)


Location peak stress



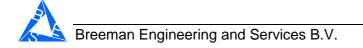
Equivalent stress levels (section view 1)



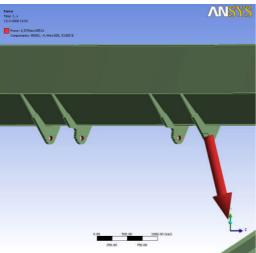
Equivalent stress levels (section view 2)

3.1.6 Loadcase: Inboardlift case 2

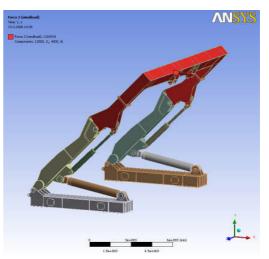
Force

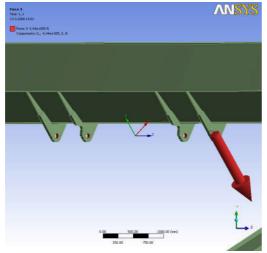

$$\begin{split} F_{y} &= -423 \cdot 10^{3} - 21 \cdot 10^{3} = -444 \cdot 10^{3} N \\ &(= designload + vertical vessel motion on SWL) \\ F_{x} &= 44 \cdot 10^{3} + 8 \cdot 10^{3} + 46 \cdot 10^{3} = 98 \cdot 10^{3} N \\ &(= transverse \ offlead + transverse \ windload \ on \ load + transverse \ vessel \ motion \ on \ SWL) \\ F_{z} &= 22 \cdot 10^{3} + 4 \cdot 10^{3} + 25 \cdot 10^{3} = 51 \cdot 10^{3} N \\ &(= longitudinal \ offlead + longitudinal \ windload \ on \ load + longitudinal \ vessel \ motion \ on \ SWL) \end{split}$$

Force 2: Windload on structure $F_x = 12 \cdot 10^3 N$ (transverse windload on structure) $F_z = 4 \cdot 10^3 N$ (longitudinal windload on structure)

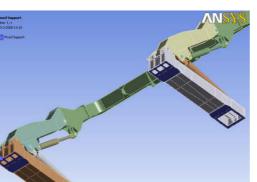

Force 3: From top sheave to deck level in angle 52° $F_{52^\circ} = -444 \cdot 10^3 N F_{52^\circ} = -444 \cdot 10^3 N$ (= F_v from top sheave to deck level in angle 52°)

Acceleration / vessel motions

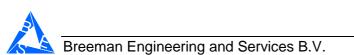

 $\begin{array}{l} a_{y}=-600+1,2\cdot-10000=-12600 \ mm/s^{2} \ \left(vertical \ acceleration+1,2\cdot gravity\right)\\ a_{x}=1300 \ mm/s^{2} \ \left(transverse \ acceleration\right)\\ a_{z}=700 \ mm/s^{2} \ \left(longitudinal \ acceleration\right) \end{array}$



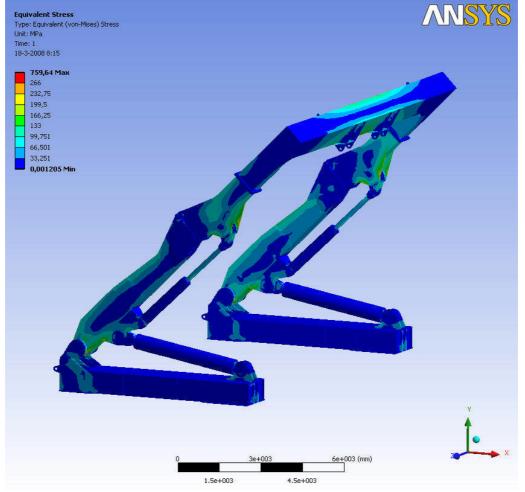
Force (areas marked red)

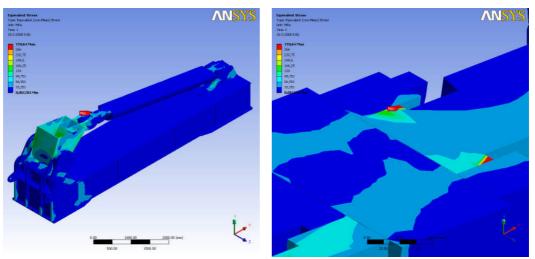


Force 2, wind load (areas marked red)

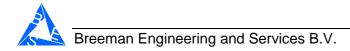

ANSYS Acceleration (all bodies)

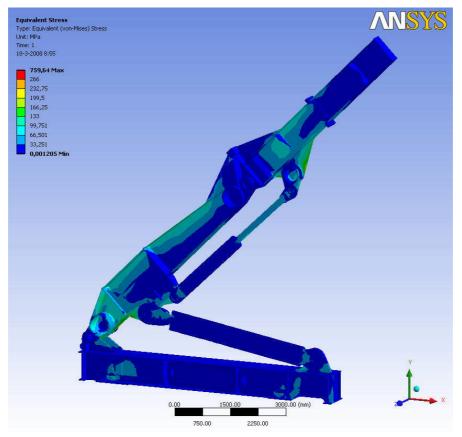
Force 3 (areas marked red) from top sheave to deck level in angle 52°

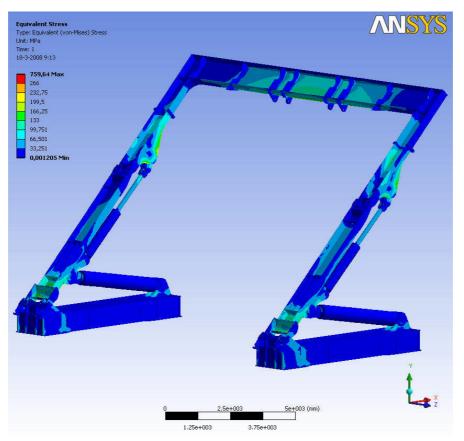

Fixed Support (areas marked blue)

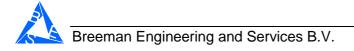


3.1.7 Solution: Inboardlift case 2

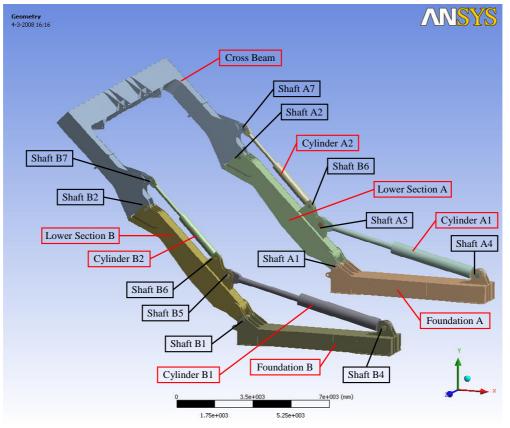

Stress levels are shown in the figures below. For this load case a maximum allowable stress is 266 N/mm² (see §2.2). Inadmissible stress levels are marked in the color red. A maximum peak stress of 759,64 N/mm² is found, but this is probably a result of singularity in the model. Therefore this peak stress can be ignored.


Equivalent stress levels (total overview)


Location peak stress

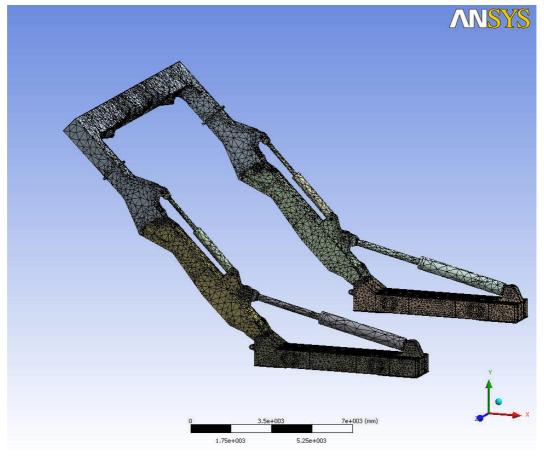


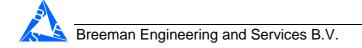
Equivalent stress levels (section view 1)

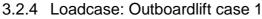

Equivalent stress levels (section view 2)

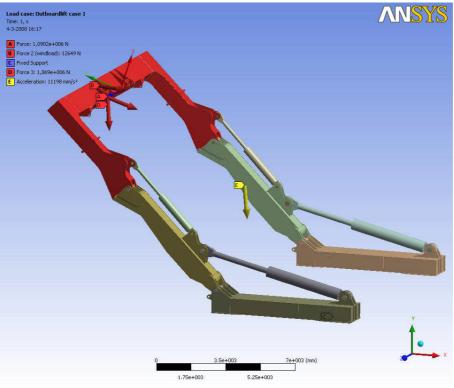
3.2 Outboard Lift

3.2.1 Geometry

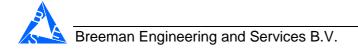

3.2.2 Connections


Object name	Turne	Object name	Turne
	Туре		Туре
Cross Beam To Lower Section A	No Separation	Cylinder A2 To Shaft A6	No Separation
Cross Beam To Shaft A2	No Separation	Cylinder A2 To Shaft A7	No Separation
Cross Beam To Cylinder A2	No Separation	Cylinder A1 To Shaft A5	No Separation
Cross Beam To Shaft A2	No Separation	Cylinder A1 To Shaft A4	No Separation
Cross Beam To Shaft A7	Bonded	Foundation B To Lower section B	No Separation
Cross Beam To Lower section B	No Separation	Foundation B To Shaft B1	Bonded
Cross Beam To Shaft B2	No Separation	Foundation B To Cylinder B1	No Separation
Cross Beam To Cylinder B2	No Separation	Foundation B To Shaft B4	Bonded
Cross Beam To Shaft B2	No Separation	Lower section B To Shaft B1	No Separation
Cross Beam To Shaft B7	Bonded	Lower section B To Shaft B2	Bonded
Foundation A To Lower Section A	No Separation	Lower section B To Cylinder B2	No Separation
Foundation A To Shaft A1	Bonded	Lower section B To Cylinder B1	No Separation
Foundation A To Cylinder A1	No Separation	Lower section B To Shaft B5	Bonded
Foundation A To Shaft A4	Bonded	Lower section B To Shaft B6	Bonded
Lower Section A To Shaft A1	No Separation	Lower section B To Shaft B2	Bonded
Lower Section A To Shaft A2	Bonded	Cylinder B2 To Shaft B6	No Separation
Lower Section A To Cylinder A2	No Separation	Cylinder B2 To Shaft B7	No Separation
Lower Section A To Cylinder A1	No Separation	Cylinder B1 To Shaft B5	No Separation
Lower Section A To Shaft A5	Bonded	Cylinder B1 To Shaft B4	No Separation
Lower Section A To Shaft A6	Bonded		
Lower Section A To Shaft A2	Bonded		

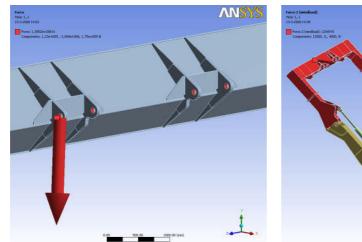



3.2.3 Mesh

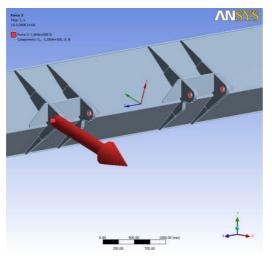
Force

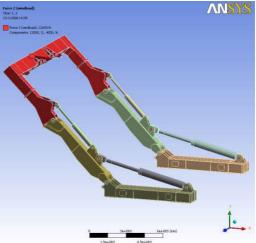

$$\begin{split} F_{y} &= -1048 \cdot 10^{3} - 21 \cdot 10^{3} = -1069 \cdot 10^{3} N \\ &(= design load + vertical vessel motion on SWL) \\ F_{x} &= 73 \cdot 10^{3} + 8 \cdot 10^{3} + 46 \cdot 10^{3} = 123 \cdot 10^{3} N \\ &(= transverse \ offlead + transverse \ windload \ on \ load + transverse \ vessel \ motion \ on \ SWL) \\ F_{z} &= 146 \cdot 10^{3} + 4 \cdot 10^{3} + 25 \cdot 10^{3} = 175 \cdot 10^{3} N \\ &(= longitudinal \ offlead + longitudinal \ windload \ on \ load + longitudinal \ vessel \ motion \ on \ SWL) \end{split}$$

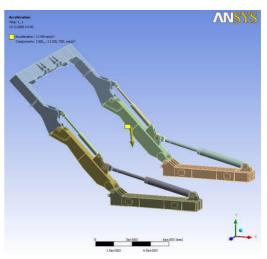
Force 2: Windload on structure $F_x = 12 \cdot 10^3 N$ (transverse windload on structure) $F_z = 4 \cdot 10^3 N$ (longitudinal windload on structure)


 $F_{18,5^{\circ}} = -1069 \cdot 10^{3} N$ (= F_{v} from top sheave to deck level in angle 18,5°)

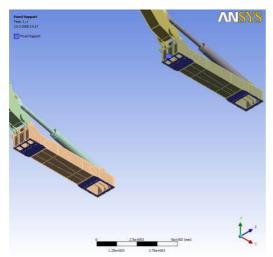
Acceleration / vessel motions

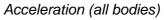

 $a_{y} = -600 + 1,05 \cdot -10000 = -11100 \text{ mm/s}^{2} \text{ (vertical acceleration + 1,05 \cdot gravity)}$ $a_{x} = 1300 \text{ mm/s}^{2} \text{ (transverse acceleration)}$ $a_{z} = 700 \text{ mm/s}^{2} \text{ (longitudinal acceleration)}$

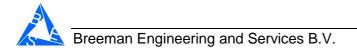




Force (areas marked red)

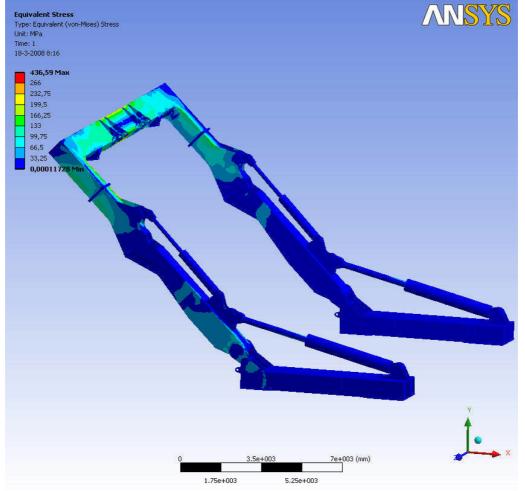


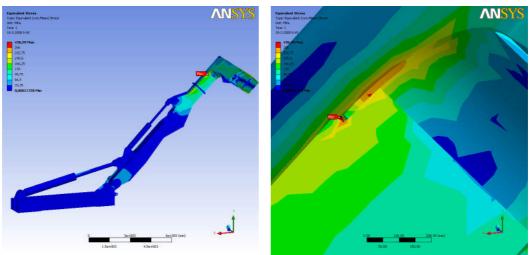

Force 2, wind load (areas marked red)



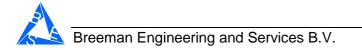
Force 3 (areas marked red) from top sheave to deck level in angle 52°

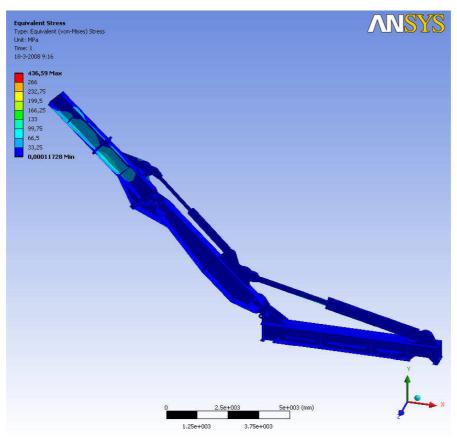
Fixed Support (areas marked blue)

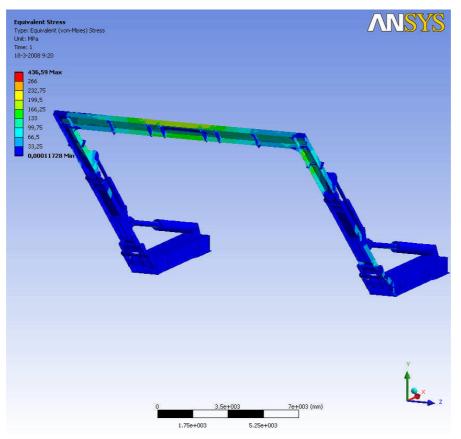


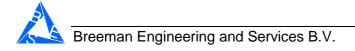


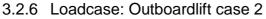
3.2.5 Solution: Outboardlift case 1

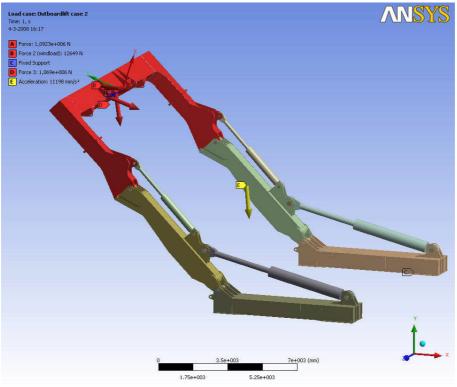

Stress levels are shown in the figures below. For this load case a maximum allowable stress is 266 N/mm² (see §2.2). Inadmissible stress levels are marked in the color red. A maximum peak stress of 436,59 N/mm² is found, but this is probably a result of singularity in the model. Therefore this peak stress can be ignored.


Equivalent stress levels (total overview)


Location peak stress

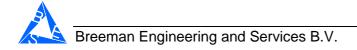



Equivalent stress levels (section view 1)

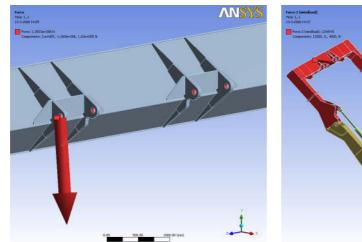


Equivalent stress levels (section view 2)

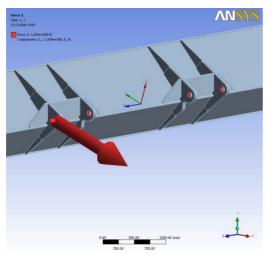
Force

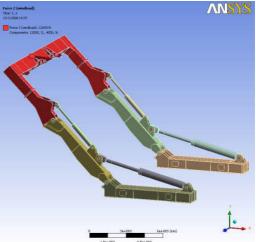

$$\begin{split} F_{y} &= -1048 \cdot 10^{3} - 21 \cdot 10^{3} = -1069 \cdot 10^{3} N \\ &(= designload + vertical vessel motion on SWL) \\ F_{x} &= 146 \cdot 10^{3} + 8 \cdot 10^{3} + 46 \cdot 10^{3} = 200 \cdot 10^{3} N \\ &(= transverse \ offlead + transverse \ windload \ on \ load + transverse \ vessel \ motion \ on \ SWL) \\ F_{z} &= 73 \cdot 10^{3} + 4 \cdot 10^{3} + 25 \cdot 10^{3} = 102 \cdot 10^{3} N \\ &(= longitudinal \ offlead + longitudinal \ windload \ on \ load + longitudinal \ vessel \ motion \ on \ SWL) \end{split}$$

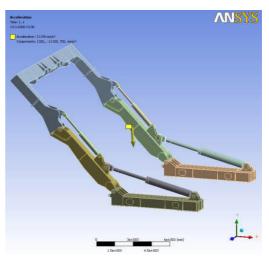
Force 2: Windload on structure $F_x = 12 \cdot 10^3 N$ (transverse windload on structure) $F_z = 4 \cdot 10^3 N$ (longitudinal windload on structure)


 $F_{18,5^{\circ}} = -1069 \cdot 10^{3} N$ (= F_{v} from top sheave to deck level in angle 18,5°)

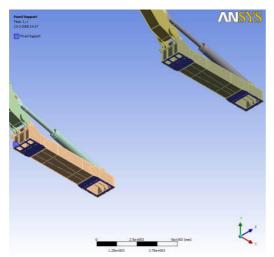
Acceleration / vessel motions

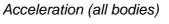

 $\begin{aligned} a_{y} &= -600 + 1,05 \cdot -10000 = -11100 \ mm/s^{2} \ (vertical \ acceleration + 1,05 \cdot gravity) \\ a_{x} &= 1300 \ mm/s^{2} \ (transverse \ acceleration) \\ a_{z} &= 700 \ mm/s^{2} \ (longitudinal \ acceleration) \end{aligned}$

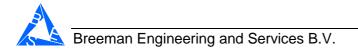




Force (areas marked red)

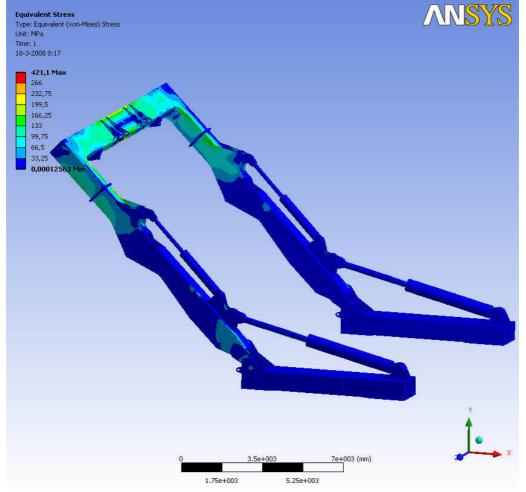


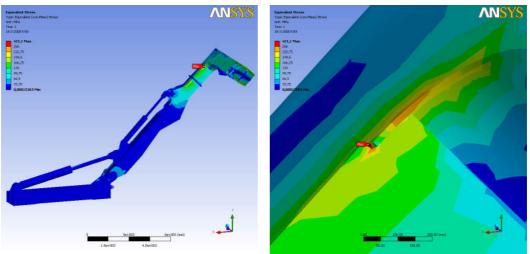

Force 2, wind load (areas marked red)



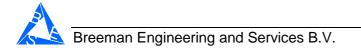
Force 3 (areas marked red) from top sheave to deck level in angle 52°

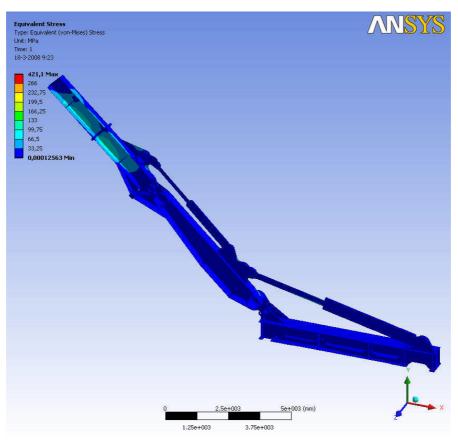
Fixed Support (areas marked blue)

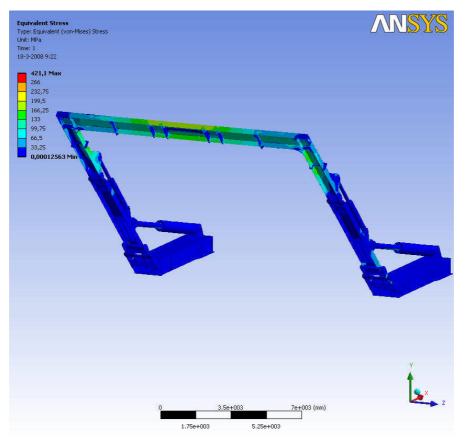


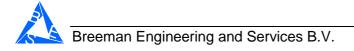


3.2.7 Solution: Outboardlift case 2

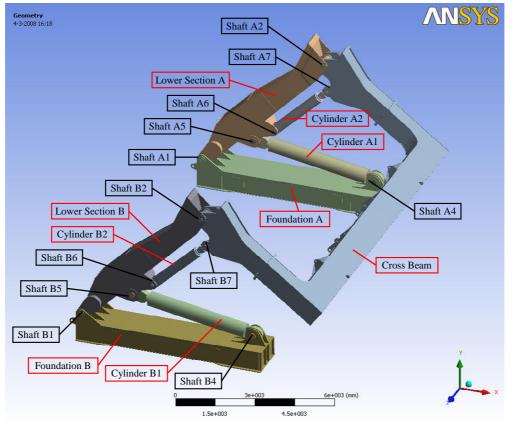

Stress levels are shown in the figures below. For this load case a maximum allowable stress is 266 N/mm² (see §2.2). Inadmissible stress levels are marked in the color red. A maximum peak stress of 421,1 N/mm² is found, but this is probably a result of singularity in the model. Therefore this peak stress can be ignored.


Equivalent stress levels (total overview)


Location peak stress

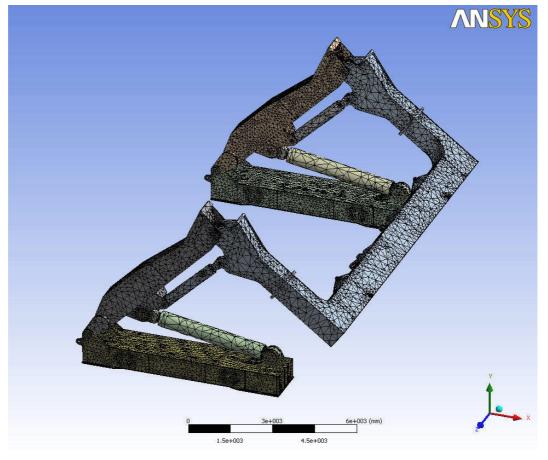


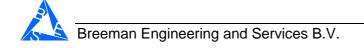
Equivalent stress levels (section view 1)

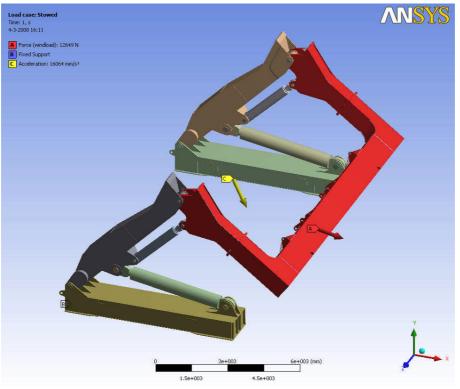

Equivalent stress levels (section view 2)

3.3 Stowed

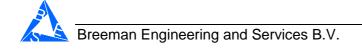
3.3.1 Geometry


3.3.2 Connections

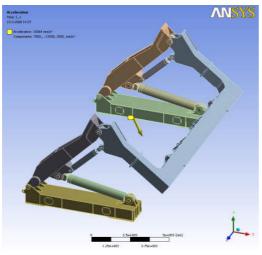

Object name	Туре	Object name	Туре
Cross Beam To Lower Section A	No Separation	Cylinder A2 To Shaft A6	No Separation
Cross Beam To Shaft A2	No Separation	Cylinder A2 To Shaft A7	No Separation
Cross Beam To Cylinder A2	No Separation	Cylinder A1 To Shaft A5	No Separation
Cross Beam To Shaft A2	No Separation	Cylinder A1 To Shaft A4	No Separation
Cross Beam To Shaft A7	Bonded	Foundation B To Lower section B	No Separation
Cross Beam To Lower section B	No Separation	Foundation B To Shaft B1	Bonded
Cross Beam To Shaft B2	No Separation	Foundation B To Cylinder B1	No Separation
Cross Beam To Cylinder B2	No Separation	Foundation B To Shaft B4	Bonded
Cross Beam To Shaft B2	No Separation	Lower section B To Shaft B1	No Separation
Cross Beam To Shaft B7	Bonded	Lower section B To Shaft B2	Bonded
Foundation A To Lower Section A	No Separation	Lower section B To Cylinder B2	No Separation
Foundation A To Shaft A1	Bonded	Lower section B To Cylinder B1	No Separation
Foundation A To Cylinder A1	No Separation	Lower section B To Shaft B5	Bonded
Foundation A To Shaft A4	Bonded	Lower section B To Shaft B6	Bonded
Lower Section A To Shaft A1	No Separation	Lower section B To Shaft B2	Bonded
Lower Section A To Shaft A2	Bonded	Cylinder B2 To Shaft B6	No Separation
Lower Section A To Cylinder A2	No Separation	Cylinder B2 To Shaft B7	No Separation
Lower Section A To Cylinder A1	No Separation	Cylinder B1 To Shaft B5	No Separation
Lower Section A To Shaft A5	Bonded	Cylinder B1 To Shaft B4	No Separation
Lower Section A To Shaft A6	Bonded		
Lower Section A To Shaft A2	Bonded		


3.3.3 Mesh

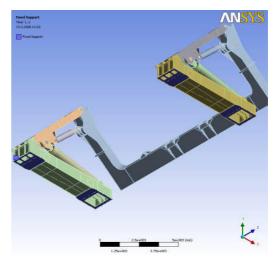
3.3.4 Loadcase: Stowed

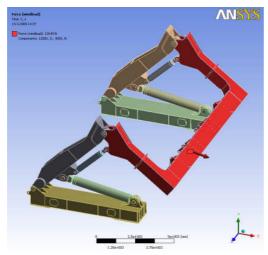


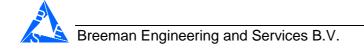
Acceleration


 $\begin{aligned} a_{y} &= -3400 + 1,05 \cdot -10000 = -13900 \ mm/s^{2} \ (vertical \ acceleration + 1,05 \cdot gravity) \\ a_{x} &= 7800 \ mm/s^{2} \ (transverse \ acceleration) \\ a_{z} &= 2000 \ mm/s^{2} \ (longitudinal \ acceleration) \end{aligned}$

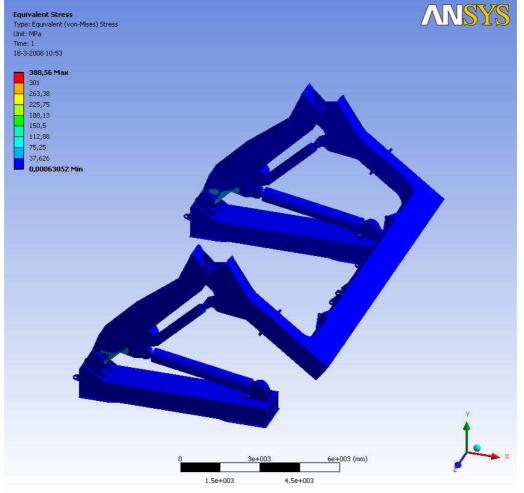
Force: Windload on structure

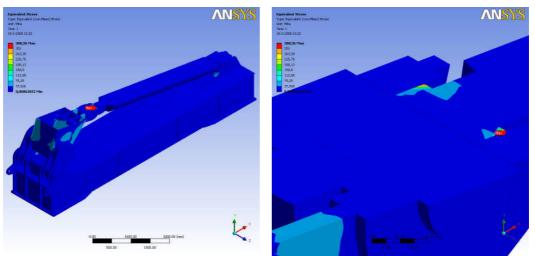

 $F_x = 81 \cdot 10^3 N$ (transverse acceleration) $F_z = 42 \cdot 10^3 N$ (longitudinal acceleration)



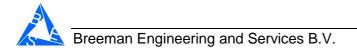

Acceleration (all bodies)

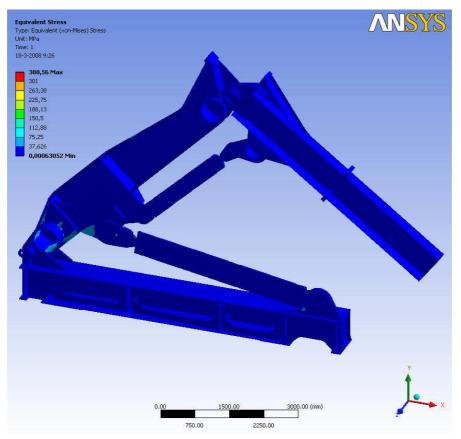
Fixed Support (areas marked blue)

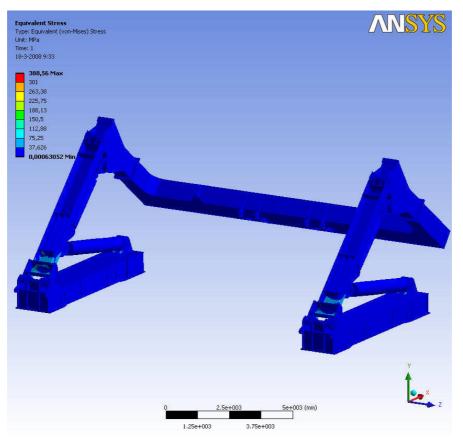

Force, wind load (areas marked red)

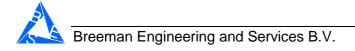


3.3.5 Solution: Stowed

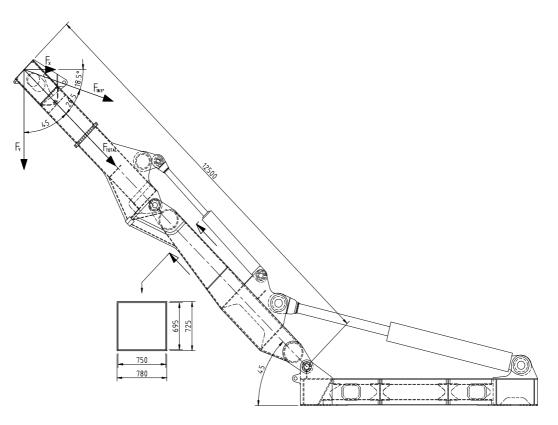

Stress levels are shown in the figures below. For this load case a maximum allowable stress is 301 N/mm² (see §2.2). Inadmissible stress levels are marked in the color red. A maximum peak stress of 388,56 N/mm² is found, but this is probably a result of singularity in the model. Therefore this peak stress can be ignored.


Equivalent stress levels (total overview)


Location peak stress



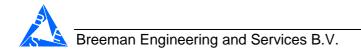
Equivalent stress levels (section view 1)



Equivalent stress levels (section view 2)

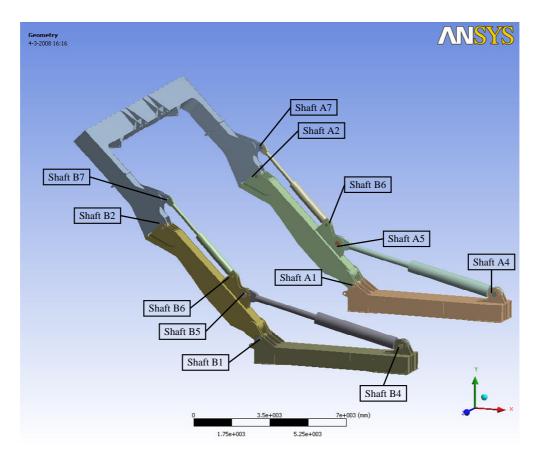
3.4 Buckling analysis

$$F_{TOTAL} = F_X \cdot \cos 45^\circ + F_Y \cdot \cos 45^\circ + F_{18,5} \cdot \cos 26,5^\circ$$

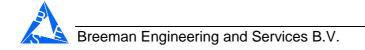

$$F_{TOTAL} = 200 \cdot 10^3 \cdot \cos 45^\circ + 1069 \cdot 10^3 \cdot \cos 45^\circ + 1069 \cdot 10^3 \cdot \cos 26,5^\circ$$

$$F_{TOTAL} = 1854 \ kN$$

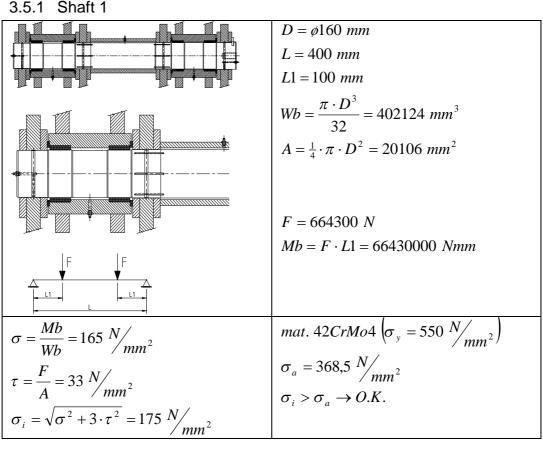
$$I = \frac{BH^{3} - bh^{3}}{12} = \frac{780 \cdot 725^{3} - 750 \cdot 695^{3}}{12} = 3788679688 \ mm^{4}$$
$$E = 2,10 \cdot 10^{5} \ N / mm^{2}$$


$$F_{BUCKLING} = \frac{\pi^2 \cdot E \cdot I}{L^2} = \frac{\pi^2 \cdot 2,10 \cdot 10^5 \cdot 3788679688}{12500^2} = 50255882,5 N$$

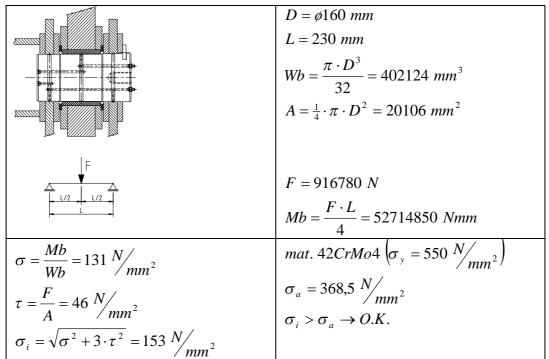
Bucklingfactor =
$$\frac{F_{TOTAL}}{F_{BUCKLING}} = \frac{1854 \cdot 10^3}{50255882,5} = 0,04$$

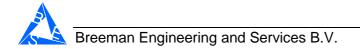


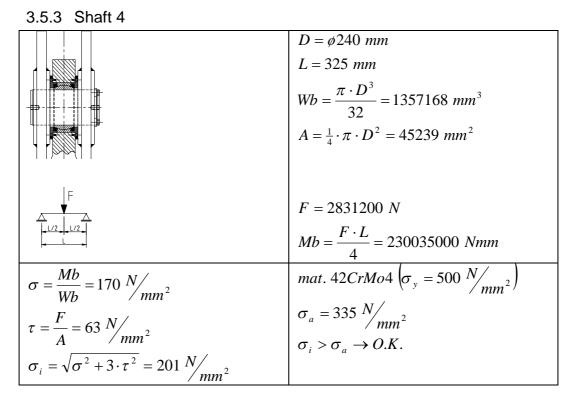
3.5 Shaft calculations

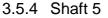


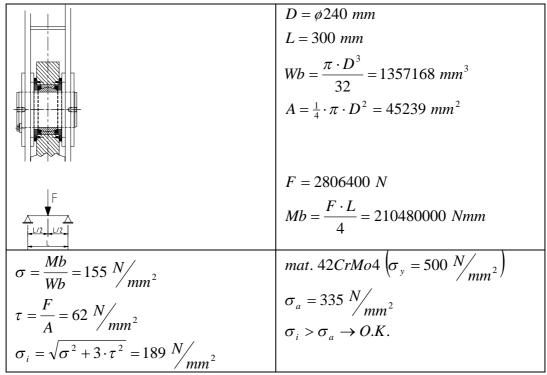
Maximum force reactions:

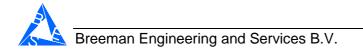

Shaft	Inboard case 1 [N]	Inboard case 2 [N]	Outboard case 1 [N]	Outboard case 2 [N]	Stowed [N]
1	2,6028E+06	2,6572E+06	6,4786E+05	4,7587E+05	1,1273E+06
2	6,4581E+05	6,6864E+05	9,1678E+05	8,8993E+05	1,1275E+05
4	2,7709E+06	2,8312E+06	2,1506E+05	3,9174E+05	1,3643E+06
5	2,7470E+06	2,8064E+06	2,4821E+05	4,2820E+05	1,2593E+06
6	1,2999E+06	1,3227E+06	2,8892E+05	4,0495E+05	2,0215E+05
7	1,4361E+06	1,4607E+06	2,9548E+05	3,9899E+05	572,57

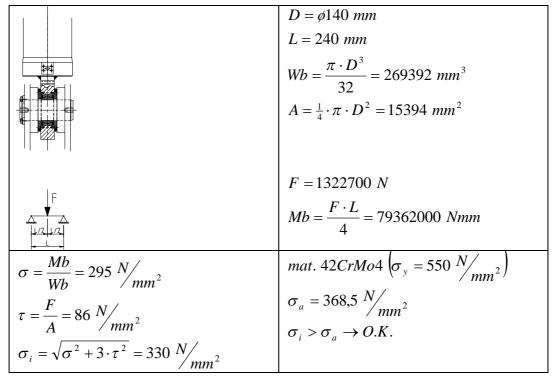


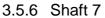


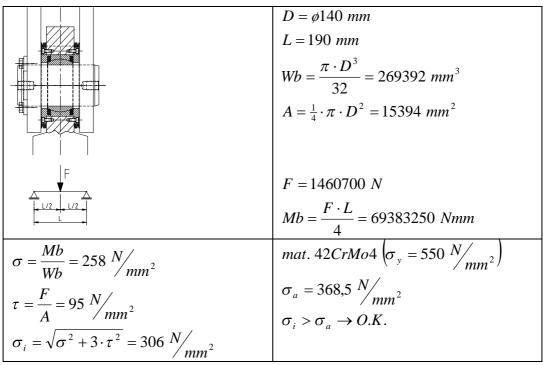

3.5.2 Shaft 2

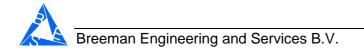




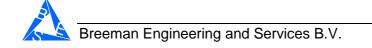








3.5.5 Shaft 6



4 Conclusion

An A-frame has been designed for a SWL 35 ton. This report describes the stress calculations which are made to check for inadmissible stress levels. The stress calculations for the construction has been made with the finite element analysis method. The shafts are checked with manual stress calculations.

The construction has been made of S355 with a yield stress 355 N/mm². The shafts are made off 42CrMo4 with a yield stress 550 N/mm² (100-160mm) and 500 N/mm² (160-250mm). The calculations show no inadmissible stress levels in all construction parts.

Appendix A

Design criteria

Design loads

The A-Frame design loads used in this report are provided by the manufacturer and have been adjusted to the new situation. This means forces due to accelerations are adjusted to the new location of the A-Frame on the vessel and wind loads are adjusted to the dimensions of the new load.

Three load cases are distinguished:

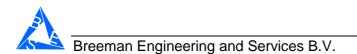
- Inboard Lift;
- Outboard Lift;
- Stowed / Survival.

Inboard Lift

For inboard lift it is assumed that the A-Frame is used as a shipboard crane, since the lifting is performed solely on the offshore installation itself. The duty factor and the hoisting factor are obtained as follows:

Ref. [1] section 3.2.3.1: Duty factor: $F_d = 1.05$;								
Ref. [1] s	Ref. [1] section 3.2.5.2: Hoisting factor: $F_h = 1 + C_l V_h$;							
		$C_1 = 0.6$	for this type of cranes;					
		$V_{h} = 0.1$	6 m/s;					
		F _h = 1 +	0.6 x 0.16 = 1.1,	but no than 1	t to be taken less .15.			
Load:								
Part Load	Sub-part SWL	Weight [ton] 35	Combined Load fact 1.2 (1.05 x 1.15)	or	Design load [ton] 42.3			

This load acts from the A-Frame downwards and also in the direction of the Upper Deck Sheave. The latter direction has an angle of 51.9° with respect to the deck for the inboard lift load case. This combination results in a vertical and a transverse load on the A-Frame as can be seen in the following table:


Load [ton]	Vertical [ton]	Transverse load [ton]
2 x 42.3 (downwards and	75.5	26.1
sideways)		

Self-weight A-Frame (Live-load):

Part	Sub-part	Weight [ton]	Combined Load factor	Design load [ton]
A- Frame	Crossbeam	10	1.2	12
	Upper-legs Lower-legs Upper Cylinders	2 x 4.1 2 x 8.2 2 x 3 2 x 5	1.2 1.2 1.2 1.2	2 x 4.9 2 x 9.8 2 x 3.6
	Lower Cylinders Hoisting equip.	2 x 5 5	1.2	2 x 6 6 tal: 67.1

Self-weight A-Frame (Dead-load):

Part	Sub-part	Weight [ton]	Combined Load factor	Design load [ton]			
A-Frame	Leg Foundation	2 x 10	1.05	2 x 10.5			
			Total:	21.0			

A-frame SWL 35 ton	Mari	ne Equipmen		Repo	rt number R08010_001
Forces as a resul	It of offlea	ad angles (se	ea sta	te 2-3):	
Load [ton]	Alpha	Beta	Tra	nsverse load [ton]	Longitudinal load [ton]
42, Case 1	3		2.2	(42.3 x sin(3))	
42, Case 2	6		4.4		
42, Case 2		3			2.2
42, Case 1		6			4.4
The wind load (V Ref. [1] section 3		Wind I Wind p	oad: l press	$F_w = A p C_f;$.613 x 20 ² = 245 [N/m ²]; om ref [1].
Part		Area in tran		ructures are obtaine se direction [m ²]	d as follows: Area in longitudinal direction [m
A-Frame – Uppe	•				2

A-Frame – Lower-legs	2 x 6.5	7
A-Frame –	14	2
Crossbeam		
Total:	31	11
Load – Spreader	7	7
Load - Mattress	12	2
Total:	19	9

Joren Marine Marine Equipment

Wind load (V=20 m/s):

0 11,0,1				
Direction	Area [m ²]	Pressure [N/m ²]	Cf	Force [ton]
Transverse	31	245	1.55	1.2
Longitudinal	11	245	1.55	0.4
Transverse	19	245	1.7	0.8
Longitudinal	9	245	1.7	0.4
	Direction Transverse Longitudinal Transverse	DirectionArea [m²]Transverse31Longitudinal11Transverse19	DirectionArea [m²]Pressure [N/m²]Transverse31245Longitudinal11245Transverse19245	Direction Area [m²] Pressure [N/m²] C _f Transverse 31 245 1.55 Longitudinal 11 245 1.55 Transverse 19 245 1.7

Forces as a result of vessel motions:

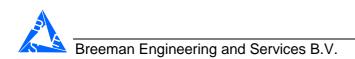
Conservative maximum accelerations in x-,y- and z-direction are used, based on the 3 hour maximum wave height for sea-state 5-6, with heading control.

	we neight for 3			Fores Item] SS F G
Part	Direction	Weight [ton]	Acceleration [m/s ²] SS 5-6 with heading control	with heading control
Crossbeam	Vertical	10	0.6	0.6
Upper-legs		2 x 4.1	0.6	2 x 0.25
Lower-legs		2 x 8.2	0.6	2 x 0.5
Leg Foundation		2 x 10	0.6	2 x 0.6
Upper Cylinders		2 x 3	0.6	2 x 0.18
Lower Cylinders		2 x 5	0.6	2 x 0.3
Hoisting equip.		5	0.6	0.3
			Total	4.5
Crossbeam	Transverse	10	1.3	1.3
Upper-legs		2 x 4.1	1.3	2 x 0.5
Lower-legs		2 x 8.2	1.3	2 x 1.1
Leg Foundation		2 x 10	1.3	2 x 1.3
Upper Cylinders		2 x 3	1.3	2 x 0.4
Lower Cylinders		2 x 5	1.3	2 x 0.7
Hoisting equip.		5	1.3	0.7
			Total	9.8
Crossbeam	Longitudinal	10	0.7	0.7
Upper-legs		2 x 4.1	0.7	2 x 0.3
Lower-legs		2 x 8.2	0.7	2 x 0.6
Leg Foundation		2 x 10	0.7	2 x 0.7
Upper Cylinders		2 x 3	0.7	2 x 0.2
Lower Cylinders		2 x 5	0.7	2 x 0.4
Hoisting equip.		5	0.7	0.4
			Total	5.3

SWL	Vertical	35	0.6		2.1
	Transverse	35	1.3		4.6
	Longitudinal	35	0.7		2.5
Total Forces on	A-Frame:				
Load case	Di	rection		Force [ton]	
	Ve	rtical		-170.3	
Load case 1	Tra	ansverse		44.6	
Load case 1	Lo	ngitudinal		46.8	
Load case 2	Tra	ansverse		13.0	
Load case 2	Lo	ngitudinal		10.7	

Total forces on components:

Component	Direction	Force [ton]	Remark
Upper Deck Sheave	Vertical	-8	Based on 42.3[t] cable tension and cable angles
	Transverse	-35	Based on 42.3[t] cable tension and cable angles
Heave Compensator	-	-	Outboard lift is governing
Traction Winch	-	-	Outboard lift is governing
Snatch-Block	-	-	Outboard lift is governing
Storage Winch	-	-	Outboard lift is governing


Outboard Lift

For outboard lift it is assumed that the A-Frame is an offshore crane. The A-Frame itself is no longer considered to be a live-load, since the A-Frame is in rest during an outboard lift. Although a Heave Compensator is present and used during an outboard lift, a conservative approach with respect to the hoisting factor is chosen and hence the positive effect on the hoisting factor was not taken into account in these design calculations. The duty factor and the hoisting factor are obtained as follows:

Duty factor: $F_d = 1.2$ (1.05 for Dead-load); Ref. [1] section 3.3.2.1: Hoisting factor: $F_h = 0.83 + F_w \sqrt{\frac{K}{L_r}}$; Ref. [1] section 3.3.3.2: F_w = 21.7 (Sea-state 5-6); $\sqrt{\frac{K}{L_l}} = 0.057;$ $F_{\rm h} = 0.83 + 21.7 \ge 0.057 = 2.07.$ Load: Part Sub-part Weight [ton] **Combined Load factor** Design load [ton] 2.48 (1.2 x 2.07) Load SWL 35 86.8 Wire (1500m) 15 1.2 18

These loads act from the A-Frame downwards and also in the direction of the Upper Deck Sheave. The latter direction has an angle of 18.5° with respect to the deck for the outboard lift load case. This combination results in a vertical and a transverse load on the A-Frame as can be seen in the following table:

Load [ton]	Vertical [ton]	Transverse load [ton]
2 x 104.8 (downwards and	138.1	99.4
sideways)		

Total: 104.8

Self-weight A	-Frame (Dead-load	d):			
Part	Sub-part	Weight [ton]	Combined Load	l factor	Design load [ton]
A-Frame	Crossbeam	10	1.05		10.5
	Upper-legs	2 x 4.1	1.05		2 x 4.3
	Lower-legs	2 x 8.2	1.05		2 x 8.6
	Leg Foundation	2 x 10	1.05		2 x 10.5
	Upper Cylinders	2 x 3	1.05		2 x 3.2
	Lower Cylinders	2 x 5	1.05		2 x 5.3
	Hoisting equip.	5	1.05		5.3
				Total:	79.4
_					
	result of offlead and		· · · · · ·		
Load [ton]	•		nsverse load [ton]	Longit	udinal load [ton]
105, Case 1			(104.8 x sin(4))		
105, Case 2		14.6			
105, Case 2				7.3	
105, Case 1	I 8			14.6	
Wind load (V	–20 m/s):				
Location	Direction	Area [m ²]	Pressure [N/m ²]	Cf	Force [ton]
On structure		31	245	1.55	1.2
	Longitudinal	11	245	1.55	0.4
On Load	Transverse	19	245	1.55	0.8
Un Luau	1101376136	10	270	1.7	0.0

Forces as a result of vessel motions:

Longitudinal

9

A-frame SWL 35 ton

Conservative maximum accelerations in x-,y- and z-direction are used, based on the 3 hour maximum wave height for sea-state 5-6, with heading control.

245

Part	Direction	Weight [ton]	Acceleration [m/s ²] SS 5-6	Force [ton] SS 5- 6
Crossbeam	Vertical	10	0.6	0.6
Upper-legs		2 x 4.1	0.6	2 x 0.25
Lower-legs		2 x 8.2	0.6	2 x 0.5
Leg Foundation		2 x 10	0.6	2 x 0.6
Upper Cylinders		2 x 3	0.6	2 x 0.18
Lower Cylinders		2 x 5	0.6	2 x 0.3
Hoisting equip.		5	0.6	0.3
			Total:	4.5
Crossbeam	Transverse	10	1.3	1.3
Upper-legs		2 x 4.1	1.3	2 x 0.5
Lower-legs		2 x 8.2	1.3	2 x 1.1
Leg Foundation		2 x 10	1.3	2 x 1.3
Upper Cylinders		2 x 3	1.3	2 x 0.4
Lower Cylinders		2 x 5	1.3	2 x 0.7
Hoisting equip.		5	1.3	0.7
			Total	0.9

1.7

0.4

Crossbeam Upper-legs Lower-legs Leg Foundation	Longitudinal	10 2 x 4.1 2 x 8.2 2 x 10	0.7 0.7 0.7 0.7		0.7 2 x 0.3 2 x 0.6 2 x 0.7
Upper Cylinders		2 x 3	0.7		2 x 0.2
Lower Cylinders		2 x 5	0.7		2 x 0.4
Hoisting equip.		5	0.7		0.4
equip.				Total:	5.3
SWL	Vertical Transverse Longitudinal	35 35 35	0.6 1.3 0.7		2.1 4.6 2.5

Total Forces on A-Frame:

Load case	Direction Vertical	Force [ton] -224.1
Load case 1	Transverse	123.1
Load case 1 Load case 2	Longitudinal Transverse	130.3 23.1
Load case 2	Longitudinal	15.8

Forces on components: Force [ton] Direction Description Component Upper Deck Transverse Based on 104.8t cable tension and cable angles -134 Sheave Based on 104.8t cable tension and cable angles -65 Vertical Heave Based on 104.8t cable tension and cable angles 104 Longitudinal Compensator Based on 104.8t cable tension and cable angles 30 Transverse Vertical Based on 104.8t cable tension and cable angles 88 -14 Vertical Self-weight Based on 104.8t cable tension and cable angles -105 Traction Winch Longitudinal Vertical Self-weight -35 Snatch-Block Longitudinal Based on 2 x 6.3t cable tension and cable angles -12.6 Transverse Based on 2 x 6.3t cable tension and cable angles -12.6 Vertical Self-weight -1 Storage Winch Transverse Based on 20t cable tension and cable angles 20 Vertical Self-weight -60 Stowed / Survival Self-weight A-Frame (Dead-load): Part Sub-part Weight [ton] **Duty Factor** Design load [ton] A-Frame Crossbeam 1.05 10.5 10 Upper-legs 2 x 4.1 2 x 4.3 1.05 2 x 8.6 Lower-legs 2 x 8.2 1.05 Leg Foundation 2 x 10 1.05 2 x 10.5 Upper Cylinders 2 x 3 1.05 2 x 3.2 Lower Cylinders 1.05 2 x 5.3 2 x 5 Hoisting equip. 1.05 5.3 5 Total: 79.4 Wind load (V = 63 m/s): Area [m²] Location Direction Pressure [N/m²] Cf Force [ton] On structure Transverse 21.4 1.55 2433 8.1

2433

Longitudinal

11.0

4.1

1.55

Forces as a result of vessel motions:


Joren Marine Marine Equipment

Conservative maximum accelerations in x-,y- and z-direction are used based on the 3
hour maximum wave height for sea-state 9-13, with heading control.

hour maximum wave height for sea-state 9-13, with heading control.					
Part	Force	Weight [ton]	Acceleration	[m/s ²]	Force [ton]
Crossbeam	Vertical	10	3.4		3.4
Upper-legs		2 x 4.1	3.4		2 x 1.4
Lower-legs		2 x 8.2	3.4		2 x 2.8
Leg		2 x 10	3.4		
Foundation					2 x 3.4
Upper		2 x 3	3.4		
Cylinders					2 x 1.0
Lower		2 x 5	3.4		
Cylinders					2 x 1.7
Hoisting		5	3.4		
equip.					1.7
				Total:	25.7
Crossbeam	Transverse	10	7.8		7.8
Upper-legs		2 x 4.1	7.8		2 x 3.2
Lower-legs		2 x 8.2	7.8		2 x 6.4
Leg		2 x 10	7.8		
Foundation					2 x 7.8
Upper		2 x 3	7.8		
Cylinders					2 x 2.3
Lower		2 x 5	7.8		
Cylinders					2 x 3.9
Hoisting		5	7.8		
equip.					3.9
				Total:	59.0
Crossbeam	Longitudinal	10	2.0		2
Upper-legs		2 x 4.1	2.0		2 x 0.8
Lower-legs		2 x 8.2	2.0		2 x 1.6
Leg		2 x 10	2.0		
Foundation					2 x 2.0
Upper		2 x 3	2.0		
Cylinders					2 x 0.6
Lower		2 x 5	2.0		
Cylinders					2 x 1.0
Hoisting		5	2.0		
equip.					1
				Total:	15.1
				-	
Total Forces on A-Frame:					
Direction			Force [ton]		
Vertical			-105.1		
T			07.0		

67.0

19.3

Transverse

Longitudinal